A Penalization-Gradient Algorithm for Variational Inequalities
نویسندگان
چکیده
منابع مشابه
A Penalization-Gradient Algorithm for Variational Inequalities
This paper is concerned with the study of a penalization-gradient algorithm for solving variational inequalities, namely, find x ∈ C such that 〈Ax, y − x〉 ≥ 0 for all y ∈ C, where A : H → H is a single-valued operator, C is a closed convex set of a real Hilbert space H. Given Ψ : H → ∪ { ∞} which acts as a penalization function with respect to the constraint x ∈ C, and a penalization parameter ...
متن کاملProximal extrapolated gradient methods for variational inequalities
The paper concerns with novel first-order methods for monotone variational inequalities. They use a very simple linesearch procedure that takes into account a local information of the operator. Also, the methods do not require Lipschitz continuity of the operator and the linesearch procedure uses only values of the operator. Moreover, when the operator is affine our linesearch becomes very simp...
متن کاملAn inexact proximal algorithm for variational inequalities
This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes p...
متن کاملAn Explicit Algorithm for Monotone Variational Inequalities
We introduce a fully explicit method for solving monotone variational inequalities in Hilbert spaces, where orthogonal projections onto C are replaced by projections onto suitable hyperplanes. We prove weak convergence of the whole generated sequence to a solution of the problem, under the only assumptions of continuity and monotonicity of the operator and existence of solutions.
متن کاملProjected Reflected Gradient Methods for Monotone Variational Inequalities
This paper is concerned with some new projection methods for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. First, we propose the projected reflected gradient algorithm with a constant stepsize. It is similar to the projected gradient method, namely, the method requires only one projection onto the feasible set and only one value of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2011
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2011/305856